O Gartner, Inc., líder mundial em pesquisa e aconselhamento imparcial em tecnologia, alerta que a Computação Cognitiva e Aprendizado Profundo (Deep Learning) são termos que os líderes de TI estarão cada vez mais expostos quando debaterem Analytics e Big Data. Com todas as expectativas relacionadas ao assunto, pode ser difícil criar um plano de ação, mas o Gartner aconselha os líderes de TI a ordenarem o ruído e usarem a tecnologia emergente para criar um projeto que faça sentido para suas organizações.
“Muitas das inovações que estão impulsionando a ruptura digital apostam em Data Science (Ciência de Dados)”, diz Jim Hare, Vice-Presidente de Pesquisas do Gartner. “Eu garanto que se a organização não tiver um plano de ação bem estruturado, o Conselho de Administração vai acabar dando o direcionamento para que os executivos usem Data Science, com ou sem o envolvimento da TI”, diz o analista.
Os líderes de TI precisam adotar Big Data e as tecnologias emergentes em seu entorno para operacionalizar a Data Science em suas empresas. Durante a Conferência Data & Analytics 2018, que acontece em maio em São Paulo, analistas do Gartner vão apresentar pesquisas, estratégias e tendências sobre o tema. O Gartner destaca que é fundamental fazer parcerias com empresas para identificar onde a ciência de dados pode ajudar. Entre as recomendações dos analistas estão o envolvimento com a linha de negócios para ver o setor vertical de sua organização e os problemas que vão impactar a empresa. Os executivos de TI devem conversar sobre desafios específicos que a unidade empresarial está enfrentando e que podem ser abordados por Data & Analytics. “Data Science não deve ser apenas uma iniciativa de TI, mas sim uma parceria com o negócio. A parceria permite que a TI ofereça especialização técnica, enquanto a unidade de negócios oferece especialização de domínio”, afirma Hare.
Outro desafio dos líderes de TI será operacionalizar o Aprendizado de Máquina (Machine Learning). Cientistas de dados realmente não sabem como implantar ou gerenciar modelos em produção. Os executivos de TI precisam fornecer a mentalidade de DevOps para ajudar os cientistas de dados a transformarem ideias em produção e ajudar a escalar em termos de como eles constroem e monitoram os modelos.
Para isso, o Gartner ressalta a importância de planejar o armazenamento e o gerenciamento de mais dados, pois a tendência é que o volume não pare de crescer. Para que os dados sejam valiosos, eles devem ser de alta qualidade, o que significa que será necessário muito armazenamento. Tecnologias tais como o Aprendizado Profundo (Deep Learning) exigem dados de alta qualidade e as áreas de TI serão responsáveis pelo gerenciamento e pelo armazenamento dessas informações, além de disponibilizar os dados corretos para diversas áreas da empresa.
Pesquisas indicam também a importância de oferecer para as equipes as ferramentas e infraestrutura certas. Os cientistas de dados estão vivenciando muitas tecnologias Open Source e de Nuvem. Certificar-se de que a equipe tenha as plataformas, ferramentas e infraestrutura certas para ter sucesso é fundamental, mas as empresas precisam adotar plataformas capazes de crescer junto com as suas demandas, de forma escalável.
Nesse novo cenário digital, funcionários são estratégicos para a mudança. Data Science deve ser encarada como um esporte coletivo, com a participação de todas as áreas da empresa. Os cientistas de dados não podem fazer tudo, por isso é importante ter engenheiros de dados para filtrar informações e arquitetos de TI que possam ajudar com os modelos a serem usados por todos os funcionários. Os líderes de TI devem oferecer suporte para toda a equipe, além de garantir que a unidade de negócios esteja envolvida para o sucesso dos projetos.
Pesquisas sobre o tema serão apresentadas na Conferência Gartner Data & Analytics, que acontece nos dias 22 e 23 de maio.
As inscrições podem ser feitas pelo e-mail brasil.inscricoes@gartner.com, pelo telefone (11) 5632-3109 ou pelo site http://www.gartner.com/br/data.
Fonte: SEGS.com.br
16 de maio de 2018